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1. INTRODUCTION

Computing systems can be broadly classified into two distinct categories—
general purpose and embedded. Embedded systems are usually intended for
a specific application. Many such systems are I/O intensive, and most of them
require real-time guarantees during operation. Examples of embedded systems
include remote sensors, digital cellular phones, audio and video disk players,
sonar, radar, magnetic resonance imaging (MRI) medical systems, video tele-
phones, and missile systems.

Power consumption is an important design issue in embedded systems. The
power and energy consumptions of the various components of an embedded
system directly influence battery lifetime, and hence the lifetime of the system.
Therefore, system lifetime can be extended by reducing energy consumption
in an embedded system. Decreased power consumption also results in higher
component reliability. Many embedded systems tend to be situated at remote
locations; the cost of replacing battery packs is high when the batteries that
power these systems fail.

Power reduction techniques can be viewed as being static or dynamic. Power
can be reduced statically by applying compile-time optimizations to generate
restructured, power-conscious machine code [AbouGhazaleh et al. 2001]. Static
techniques can also be applied at design time to synthesize power-optimized
hardware [Alidina et al. 1994]. Dynamic power reduction techniques are used
during run-time to take advantage of variations in run-time workload.

The use of static power reduction techniques only can result in a system
that is relatively inflexible to changes in the operating environment. Although
the use of static techniques result in significant energy savings, recent research
has focused more on dynamic power management techniques. These techniques
usually take advantage of the features provided by the underlying hardware to
obtain further energy savings.

Dynamic power management (DPM) refers to the methodology in which
power management decisions are made at run-time to take advantage of vari-
ations in system workload and resources. Modern hardware designs provide
several features to support DPM. These features include multiple power states
in I/O devices and variable-voltage processors. Given these features, a DPM
scheme can make intelligent decisions about changing the operating voltage
of a processor, called dynamic voltage scaling (DVS), and switching devices to
low-power sleep states during periods of inactivity. DVS has emerged as an
effective energy-reduction technique by utilizing the fact that energy consump-
tion of a CMOS processor is quadratically proportional to its operating voltage.
I/O-centric DPM techniques identify time intervals where I/O devices are not
used and switch these devices to low-power modes during these intervals. Such
techniques can be implemented at both the hardware and software levels.

More recently, DPM at the operating system (OS) level has gained im-
portance due to its flexibility and ease of use. The OS has a global view of
system resources and workload and can therefore can make intelligent power-
management decisions in a dynamic and flexible manner. The Advanced Con-
figuration and Power Interface (ACPI) standard, introduced in 1997, allows

ACM Transactions on Embeded Computing Systems, Vol. 4, No. 1, February 2005.



Deterministic I/O Device Scheduling • 143

hardware power states to be controlled by the OS through system calls, ef-
fectively transferring the power reduction responsibility from the hardware
(BIOS) to the software (OS).

A number of embedded systems are designed for real-time use. These systems
must be designed to meet both functional and timing requirements [Buttazzo
1997]. Thus, the correct behavior of these systems depends not only on the
accuracy of computations but also on their timeliness. Systems in which the
violation of these timing requirements can result in catastrophic consequences
are termed hard real-time systems. Any real-time scheduling algorithm must
guarantee timeliness and schedule tasks so that the deadline of every task is
met. Energy minimization adds a new dimension to these design issues.

In modern computer systems, the CPU and the I/O subsystem are among the
major consumers of power. While reducing CPU power results in significant en-
ergy savings, the I/O subsystem is also a potential candidate to target for power
reduction in I/O-intensive systems. However, switching between device power
states has associated time and power penalties, that is, a device takes a certain
amount of time and power to transition between its power states. In real-time
systems where tasks have associated deadlines, this switching must be per-
formed with great caution to avoid the consequences of tasks missing their dead-
lines. Current-day practice involves keeping devices in hard real-time systems
powered up during the entirety of system operation; the critical nature of I/O de-
vices operating in real-time prohibits the shutting down of devices during run-
time in order to avoid the catastrophic consequences of missed task deadlines.

In this paper, we present a nonpreemptive optimal offline scheduling algo-
rithm to minimize the energy consumption of the I/O devices in hard real-time
systems. In safety-critical applications, offline scheduling is often preferred
over priority-based run-time scheduling to achieve high predictability [Xu and
Parnas 2000]. In systems where offline scheduling is used, the problem of
scheduling tasks for minimum I/O energy can be readily addressed through
the approach presented here. We refer to the algorithm that is described in this
paper as the energy-optimal device scheduler (EDS). For a given job set, EDS
determines the start time of each job such that the energy consumption of the
I/O devices is minimized, while guaranteeing that no real-time constraint is
violated. EDS uses a tree-based branch-and-bound approach to identify these
start times. In addition, EDS provides a sequence of states for the I/O devices,
referred to as the I/O device schedule, that is provably energy-optimal under
hard real-time job deadlines. Temporal and energy-based pruning are used to
reduce the search space significantly. We show that the I/O device scheduling
problem is NP-complete, and we present a heuristic called maximum device
overlap (MDO) to generate near-optimal solutions in polynomial time. Exper-
imental results are presented to show that EDS and MDO reduce the energy
consumption of I/O devices significantly for hard real-time systems.

The rest of the paper is organized as follows. In Section 2, we review related
prior work on DVS and I/O device scheduling. In Section 3 we present a formal
statement of our problem, including the terminology used in the paper and
our assumptions. We prove that the minimum-energy I/O device scheduling
problem for hard real-time systems is NP-complete. In Section 4, we explain
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the pruning technique that plays a pivotal role in the reduction of the search
space. In Section 5, we describe the energy-optimal EDS algorithm. In Section 6,
we describe the MDO heuristic with O(pH2) complexity, where p is the number
of devices in the system and H is the hyperperiod. In Section 7 we present our
experimental results. Finally, in Section 8, we summarize the paper and outline
directions for future research.

2. RELATED PRIOR WORK

The past decade has seen a significant body of research on low-power design
methodologies. This research has focused primarily on reducing the power con-
sumption of the CPU and I/O devices. We first review DPM methods for the
CPU. In Yao et al. [1995], a minimum-energy, offline preemptive task schedul-
ing algorithm is presented. This method identifies critical intervals (intervals
in which groups of tasks must run at a constant maximum voltage in any op-
timal schedule) in an iterative fashion. These tasks are then scheduled using
the EDF scheduling policy [Liu and Layland 1973]. An online scheduling al-
gorithm for the preemptive task model is presented in Hong et al. [1998]. The
algorithm guarantees that all periodic task deadlines are met. It also accepts
aperiodic tasks whose deadlines are guaranteed to be met (the guarantee is
provided by an acceptance test). In Ishihara and Yasuura [1998], the authors
consider the problem of statically assigning voltages to tasks using an inte-
ger linear programming formulation. They show that energy is minimized only
if a task completes exactly at its deadline and that at most two voltages are
required to emulate an ideal voltage level (in the case where only discrete fre-
quencies are allowed). In Shin and Choi [1999], an online DVS technique based
on the rate-monotonic algorithm (RMA) is presented. This approach uses the
fixed-priority implementation model described in Katcher et al. [1993]. The
method presented in Shin and Choi [1999] identifies time instants at which
processor speed can be scaled down to reduce power consumption, while guar-
anteeing that no task deadlines are missed. This work is extended in Shin
et al. [2000]. The authors improve upon their prior work by first performing an
offline schedulability analysis of the task set and determining the minimum
possible speed at which all tasks meet their deadlines. An online component
then takes advantage of run-time slack that is generated, for example, when
tasks do not all run at their estimated worst-case computation times. In Quan
and Hu [2001], a near-optimal offline fixed-priority scheduling scheme is pre-
sented. This is extended in Quan and Hu [2002] to generate optimal solutions
for the DVS problem. An online slack estimation method is presented in Kim
et al. [2002] that is used to dynamically vary processor voltage under dynamic
priority scheduling schemes.

Almost all prior work on DPM techniques for I/O devices has focused pri-
marily on scheduling devices in a non-real-time environment. I/O-centric DPM
methods broadly fall into three categories—timeout based, predictive and
stochastic. Timeout-based DPM schemes shut down I/O devices when they have
been idle for a specified threshold interval [Golding et al. 1995]. The next re-
quest generated by a task for a device that has been shut down wakes it up. The
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device then proceeds to service the request. Predictive schemes are more read-
ily adaptable to changing workloads than timeout-based schemes. Predictive
schemes such as the one described in Hwang and Hu [1997] attempt to predict
the length of the next idle period based on the past observation of requests.
In Lu et al. [2000], a device-utilization matrix keeps track of device usage and
a processor-utilization matrix keeps track of processor usage of a given task.
When the utilization of a device falls below a threshold, the device is put into the
sleep state. In Chung et al. [1999], devices with multiple sleep states are consid-
ered. Here too, the authors use a predictive scheme to shut down devices based
on adaptive learning trees. Stochastic methods usually involve modeling de-
vice requests through different probabilistic distributions and solving stochas-
tic models (Markov chains and their variants) to obtain device switching times
[Benini et al. 1999; Simunic et al. 2001]. In Irani et al. [2002], a theoretical
approach based on the notion of competitive ratio is developed to compare dif-
ferent DPM strategies. The authors also present a probabilistic DPM strategy
where the length of the idle period is determined through a known probabilistic
distribution.

An important observation that we make here is that none of the above I/O-
DPM methods are viable candidates for use in real-time systems. Due to their
inherently probabilistic nature, the applicability of the above methods to real-
time systems falls short in one important aspect—real-time temporal guaran-
tees cannot be provided. Shutting down a device at the wrong time can poten-
tially result in a task missing its deadline (this is explained in greater detail
in Section 3. Although significantly prolonging battery life, most methods that
have been described in the literature thus far target non-real-time systems,
where average task response time (rather than deadline) is an important de-
sign parameter. In non-real-time systems, a small delay in computation can be
tolerated. In hard real-time systems, meeting deadlines is of critical importance,
and therefore, it becomes apparent that new algorithms that operate in a more
deterministic manner are needed in order to guarantee real-time behavior.

A recent approach for I/O device scheduling for real-time systems relies on
the notion of a mode dependency graph (MDG) for multiple processors and
I/O devices [Li et al. 2002]. An algorithm based on topological sorting is used to
generate a set of valid mode combinations. A second algorithm then determines
a sequence of modes for each resource such that all timing constraints are
met and max-power requirements are satisfied for a given task set. A schedule
generated in Li et al. [2002] is not necessarily an energy-optimal schedule for the
task set. Furthermore, the work in Li et al. [2002] does not distinguish between
I/O devices and processors. On the other hand, the model we assume is that of a
set of periodic tasks executing on a single processor. These tasks use a given set
of I/O devices. We only consider offline device scheduling; two online I/O-based
DPM algorithms are described in Swaminathan and Chakrabarty [2003].

DVS for real-time multiprocessor systems has been studied in Luo and Jha
[2001, 2002], and Zhang et al. [2002]. In Luo and Jha [2001], the authors first
perform a static voltage assignment to a set of real-time tasks with precedence
constraints. A dynamic voltage scheme is also proposed that handles soft ape-
riodic tasks, while also adjusting clock frequency at run-time to utilize any
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excess slack that is generated. The authors of Zhang et al. [2002] follow an ap-
proach similar to the one described in Luo and Jha [2001]. They use a variant of
the latest-finish-time heuristic to perform task allocation, and then present an
integer linear programming model to optimally identify the clock frequencies
for the task set. Minimizing communication power in real-time multiprocessor
systems has been considered recently in Liu et al. [2002]. The authors assume
a multiprocessor system, with each node having a voltage-scalable processor,
and a communication channel. The network interface at each node can transmit
and receive at different speeds, with corresponding power levels. Each process
on a node consists of three segments—a receive segment, a local processing
segment, and a send segment. Each process also has an associated deadline.
The problem addressed in Liu et al. [2002] is to identify a communication speed
and a processor speed for each node such that the global energy consumption
is minimized.

In the next section, we present our problem statement and describe the un-
derlying assumptions.

3. NOTATION, PROBLEM STATEMENT, AND COMPLEXITY ANALYSIS

In this section, we present the problem statement, our notation, and underlying
assumptions. We also show that the problem we address is NP-complete.

3.1 Notation and Problem Statement

We are given a task set T = {τ1, τ2, . . . , τn} of n periodic tasks. Associated with
each task τi ∈ T are the following parameters:
� its release (or arrival) time ai,
� its period pi,
� its deadline di,
� its execution time ci, and
� a device usage list Li, consisting of all the I/O devices used by τi.

The hyperperiod H of the task set is defined as the least common multi-
ple of the periods of all tasks. We assume that the deadline of each task is
equal to its period, that is, pi = di. Associated with each task set T is a job set
J= { j1, j2, . . . , jl } consisting of all the instances of each task τi ∈ T , arranged
in ascending order of arrival time, where l = ∑n

k=1 H/pk . Except for the pe-
riod, a job inherits all properties of the task of which it is an instance. This
transformation of a pure periodic task set into a job set does not introduce sig-
nificant overhead because optimal I/O device schedules are generated offline,
where scheduler efficiency is not a pressing issue.

The system also uses a set K = {k1, k2, . . . , kp} of p I/O devices. Each device
ki has the following parameters:
� two power states—a low-power sleep state psl ,i and a high-power working

state psh,i,
� a transition time from psl ,i to psh,i represented by twu,i,
� a transition time from psh,i to psl ,i represented by tsd ,i,
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� power consumed during wake-up Pwu,i,
� power consumed during shutdown Psd ,i,
� power consumed in the working state Pw,i, and
� power consumed in the sleep state Ps,i.

We assume that the worst-case execution times of the tasks are greater than
the transition time of the devices. We make this assumption to ensure that
the states of the I/O devices are clearly defined at the completion of the jobs.
Although we assume here that the devices have only a single sleep state, our
algorithms can also generate energy-optimal device schedules for devices with
multiple low-power states. We explain this in greater detail in Section 5.

We assume, without loss of generality, that for a device ki, twu,i = tsd ,i = t0,i
and Pwu,i = Psd ,i = P0,i. The energy consumed by device ki is given by Ei =
Pw,itw,i + Ps,its,i + mP0t0, where m is the number of state transitions, tw,i is the
total time spent by device ki in the working state, and ts,i is the total time spent
in the sleep state, assuming that all devices possess only two power states. The
problem Pio that we address in this paper is formally stated below:

� Pio: Given a job set J that uses a set K of I/O devices, identify a set of start
times S = {s1, s2, . . . , sl } for the jobs such that the total energy consumed∑p

i=1 Ei by the set K of I/O devices is minimized and all jobs meet their
deadlines.

This set of start times, or schedule, provides a minimum-energy device sched-
ule. Once a task schedule has been determined, a corresponding device schedule
is generated by determining the state of each device at the start and completion
of each job based on its device-usage list.

Requests can be processed by the devices only in the working state. All I/O
devices used by a job must be powered-up before it starts execution. There are
no restrictions on the time instants at which device states can be switched. The
I/O device schedule that is computed offline is loaded into memory, and a timer
controls the switching of the I/O devices at run-time. Such a scheme can be
implemented in systems where tick-driven scheduling is used. We assume that
all devices are powered up at time t = 0.

Incorrectly switching power states can cause increased, rather than de-
creased, energy consumption for an I/O device. This leads to the concept of
breakeven time, which is the time interval for which a device in the powered-up
state consumes an energy exactly equal to the energy consumed in shutting a
device down, leaving it in the sleep state and then waking it up Hwang and Hu
[1997]. Figure 1 illustrates this concept. If any idle time interval for device ki is
greater than its breakeven time tbe,i, energy is saved by powering ki down. For
idle intervals that are less than the breakeven time interval, energy is saved
by keeping the device in the powered-up state. Device switching for reduced
energy consumption therefore results in latencies of 2tbe,i because devices can-
not be used during state-transitions. However, by performing task scheduling
to minimize device energy, we adjust the task schedule such that the number
of idle intervals of length 2tbe,i or greater are maximized.
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Fig. 1. Illustration of breakeven time. The time interval for which the energy consumptions are
the same in (a) and (b) is called the breakeven time.

It is easy to show that the decision version of problem Pio is NP-complete. We
first show that Pio ∈ NP and then show that Pio is NP-hard using the method
of restriction. We restate Pio in the form of a decision problem.

� INSTANCE: Set J of jobs that uses a set K of I/O devices and a positive
constant B.

� QUESTION: Is there a feasible schedule forJ such that the energy consumed
by the set K of I/O devices is at most B?

A nondeterministic algorithm can generate a job schedule and compute the
energy consumed by the set of devices, and also check in polynomial time if
the energy consumption is at most B. To show that Pio is NP-hard, we use
the method of restriction. Consider a special case where K = φ, that is, no
devices are used. The decision problemPio then reduces to the sequencing within
intervals problem, which is known to be NP-complete [Garey and Johnson
1977]. Thus Pio is NP-complete.

Although Pio is NP-complete, it can be solved optimally for moderate-sized
problem instances. In the following section, we present our approach to solving
Pio and the underlying theory.

4. PRUNING TECHNIQUE

We generate a schedule tree and iteratively prune branches when it can be guar-
anteed that the optimal solution does not lie along those branches. The schedule
tree is pruned based on two factors—time and energy. Temporal pruning is per-
formed when a certain partial schedule of jobs causes a missed deadline deeper
in the tree. The second type of pruning—which we call energy pruning—is the
central idea on which EDS is based. The remainder of this section explains the
generation of the schedule tree and the pruning techniques that are employed.
We illustrate these through the use of an example.
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Table I. Example Task Set T 1

Arrival Completion Period Device-Usage
Task Time Time (Deadline) List
τ1 0 1 3 k1
τ2 0 2 4 k2

Table II. List of Jobs for Task Set T 1 from Table I

j1 j2 j3 j4 j5 j6 j7
ai 0 0 3 4 6 8 9
ci 1 2 1 2 1 2 1
di 3 4 6 8 9 12 12

A vertex v of the tree is represented as a 3-tuple (i, t, e), where i is a job ji, t
is a valid start time for ji, and e represents the energy consumed by the devices
until time t. An edge z connects two vertices (i, t, e) and (k, l , m) if job jk can
be successfully scheduled at time l given that job ji has been scheduled at time
t. A path from the root vertex to any intermediate vertex v has an associated
order of jobs that is termed a partial schedule. A path from the root vertex to
a leaf vertex constitutes a complete schedule. A feasible schedule is a complete
schedule in which no job misses its associated deadline. Every complete sched-
ule is a feasible schedule (temporal pruning eliminates all infeasible partial
schedules).

An example task set T 1 consisting of two tasks is shown in Table I. Each
task has an arrival time, a worst-case execution time, and a period. We assume
that the deadline for each task is equal to its period. Task τ1 uses device k1,
and task τ2 uses device k2. Table II lists the instances of the tasks, arranged
in increasing order of arrival. In this example, we assume a working power of
6 units, a sleep power of 1 unit, a transition power of 3 units, and a transition
time of 1 unit.

We now explain the generation of the schedule tree for the job set shown in
Table II. The root vertex of the tree is a dummy vertex. It is represented by the
3-tuple (0, 0, 0) that represents dummy job j0 scheduled at time t = 0 with an
energy consumption of 0 units. We next identify all jobs that are released at
time t = 0. The jobs that are released at t = 0 for this example are j1 and j2.
Job j1 can be scheduled at times t = 0, t = 1, and t = 2 without missing its
deadline. We also compute the energy consumed by all the devices up to times
t = 0, t = 1, and t = 2. The energy values are 0, 8, and 10 units, respectively
(Figure 2 explains the energy calculation procedure). We therefore draw edges
from the dummy root vertex to vertices (1, 0, 0), (1, 1, 8), and (1, 2, 10). Similarly,
job j2 can be scheduled at times t = 0, t = 1, and t = 2 and the energy values
are 0, 8, and 10 unit, respectively. Thus, we draw three more edges from the
dummy vertex to vertices (2, 0, 0), (2, 1, 8), and (2, 2, 10). Note that job j2 would
miss its deadline if it were scheduled at time t = 3 (since it has an execution
time of 2 units). Therefore, no edge exists from the dummy node to node (2, 3, e),
where e is the energy consumption up to time t = 3. Figure 3 illustrates the
tree after one job has been scheduled. Each level of depth in the tree represents
one job being successfully scheduled.
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Fig. 2. Calculation of energy consumption.

Fig. 3. Partial schedules after 1 scheduled job.

We then proceed to the next level. We examine every vertex at the previous
level and determine the jobs that can be scheduled next. By examining node
(1, 0, 0) at level 1, we see that job j1 would complete its execution at time t = 1.
The only other job that has been released at t = 1 is job j2. Thus, j2 can be
scheduled at times t = 1 and t = 2 after job j1 has been scheduled at t = 0.
The energies for these nodes are computed, and edges are drawn from (1, 0, 0)
to (2, 1, 10) and (2, 2, 14). Similarly, examining vertex (1, 1, 8) results in vertex
(2, 2, 16) at level 2. The next vertex at level 1—vertex (1, 2, 10)—results in a
missed deadline at level 2. If job j1 were scheduled at t = 2, it would complete
execution at time t = 3. The earliest time at which j2 could be scheduled is
t = 3; however, even if it were scheduled at t = 3, it would miss its deadline.
Thus, scheduling j1 at t = 2 does not result in a feasible schedule. This branch
can hence be pruned. Similarly, the other nodes at level 1 are examined, and
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Fig. 4. Partial schedules after two scheduled jobs.

the unpruned partial schedules are extended. Figure 4 illustrates the schedule
tree after two jobs have been scheduled. The edges that have been crossed out
represent branches that are not considered due to temporal pruning.

At this point, we note that vertices (2, 2, 14) and (2, 2, 16) represent the same
job ( j2) scheduled at the same time (t = 2). However, the energy consumptions
for these two vertices are different. This observation leads to the following
theorem:

THEOREM 1. When two vertices at the same tree depth representing the same
job being scheduled at the same time can be reached from the root vertex through
two different paths, and the orders of the previously scheduled jobs along the
two partial schedules are identical, then the partial schedule with higher energy
consumption can be eliminated without losing optimality.

PROOF. Let us call the two partial schedules at a given depth schedule A and
schedule B, with schedule A having lower energy consumption than schedule
B. We first note that schedule B has higher energy consumption than schedule
A because one or more devices have been in the powered-up state for a longer
period of time than necessary in schedule B. Assume that i jobs have been
scheduled, with job ji being the last scheduled job. Since we assume that the
execution times of all jobs are greater than the maximum transition time of the
devices, it is easy to see that the state of the devices at the end of job ji will
be identical in both partial schedules. By performing a time translation (map-
ping the end of job ji ’s execution to time t = 0), we observe that the resulting
schedule trees are identical in both partial schedules. However, all schedules
in schedule B after time translation will have an energy consumption that is
greater than their counterparts in schedule A by an energy value Eδ, where Eδ

is the energy difference between schedules A and B. It is also easy to show that
the energy consumed during job ji ’s execution in schedule A will always be less
than or equal to ji ’s execution in schedule B. This completes the proof of the
theorem.
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Fig. 5. Partial schedules after three scheduled jobs.

Fig. 6. Complete schedule tree.

The application of this theorem to the above example results in partial
schedule B in Figure 4 being discarded. As one proceeds deeper down the sched-
ule tree, there are more vertices such that the partial schedules corresponding to
the paths to them from the root vertex are identical. It is this “redundancy” that
allows for the application of Theorem 1, which consequently results in tremen-
dous savings in memory while still ensuring that an energy-optimal schedule
is generated. By iteratively performing this sequence of steps (vertex gener-
ation, energy calculation, vertex comparison, and pruning), we generate the
complete schedule tree for the job set. Figure 5 illustrates the partial sched-
ules after three jobs have been scheduled for our example. The complete tree
is shown in Figure 6. We have not shown paths that have been temporally
pruned. The edges that have been crossed out with horizontal slashes represent
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Fig. 7. Pseudocode description of EDS.

energy-pruned branches. The energy-optimal device schedule can be identified
by tracing the path from the highlighted node to the root vertex in Figure 6.

5. THE EDS ALGORITHM

The pseudocode for EDS is shown in Figure 7. EDS takes as input a job set J
and generates all possible nonpreemptive minimum energy schedules for the
given job set. The algorithm operates as follows. The time counter t is set to 0,
and openList is initialized to contain only the root vertex (0, 0, 0) (lines 1 and
2). In lines 3–10, every vertex in openList is examined and nodes are generated
at the succeeding level. Next, the energy consumptions are computed for each
of these newly generated vertices (line 11). Lines 15–20 correspond to the prun-
ing technique. For every pair of replicated vertices, the partial schedules are
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checked and the one with the higher energy consumption is discarded. Finally,
the remaining vertices in currentList are appended to openList. currentList is
then reset. This process is repeated until all the jobs have been scheduled, that
is, the depth of the tree equals the total number of jobs (lines 25–28). Note that
several schedules can exist with a given energy consumption for a given job set.
EDS generates all possible unique schedules with a given energy for a given
job set. One final comparison of all these unique schedules results in the set of
schedules with the absolute minimum energy.

Devices with multiple low-power sleep states can be handled simply by iter-
ating through the list of low-power sleep states and identifying the sleep state
that results in the most energy savings for a given idle interval. However, the
number of allowed sleep states is limited by our assumption that the transition
time from a given low-power sleep state is less than the worst-case completion
time of the task.

The EDS algorithm attempts to find an optimal solution for an NP-complete
problem. Hence, despite the pruning techniques that it employs, it can be ex-
pected to require excessive memory and computation time for large problem
instances. We have therefore developed a heuristic method to generate near-
optimal solutions in polynomial time. We refer to it as the maximum device
overlap (MDO) heuristic.

6. MAXIMUM DEVICE OVERLAP HEURISTIC

The MDO algorithm uses a real-time scheduling algorithm to generate a feasi-
ble real-time job schedule and then iteratively swaps job segments to reduce en-
ergy consumption. MDO is efficient for large problem instances because, unlike
EDS, it generates I/O device schedules for preemptive schedules. The preemp-
tive scheduling with arrival times and deadlines has been shown to be solvable
in polynomial time [Lawler 1973]. Thus, the MDO algorithm is also a polyno-
mial time algorithm, with a computational complexity of O(pH2), where p is
the number of devices used and H is the hyperperiod (note that H ≤ ∏n

i=1 pi,
where pi is the period of task τi). The pseudocode for the MDO heuristic is
shown in Figure 8.

The algorithm takes as input a feasible schedule S of jobs. This feasible
schedule S is generated using a real-time scheduling algorithm such as RM
or EDF. The algorithm operates in the following manner. At the completion of
each job, the algorithm finds the next schedulable job with a device-usage list
closest to the device-usage list of the current job. We refer to the number of
devices that are common to two jobs as device overlap, that is, for two jobs ji
and ji+1, the device overlap do = Li ∩ Li+1. Lines 2, 3, and 4 are initializations.
In lines 5–19, we select the new schedulable job with the closest device-usage
overlap with the current job. In line 8, a check is performed to ensure that job
jt2 is schedulable at time t + 1. We also check to ensure that swapping the two
jobs does not cause a missed deadline. For each job that passes this test, the
device-usage overlap with the current job is calculated (lines 9–13) and the one
with the highest overlap is chosen for swapping. The two jobs are then swapped
in line 20.
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Fig. 8. Pseudocode description of the MDO heuristic.

In our implementation, when the MDO algorithm terminates, the array S[t]
of time slots contains a new schedule of jobs with a lower I/O device energy
consumption. It is easy to extract the device schedule from this job schedule. A
procedure to extract a device schedule from a job schedule is shown in Figure 9
(this procedure can be used for both EDS and MDO). MDO can be used be used
for devices with multiple power states.

Procedure Extract() takes as inputs the array S of time slots and the
parameters of a device k (in Figure 9, we assume that the device parameters
are implicitly available through the argument k, and that the power states are
sorted in decreasing order of power values). At the start of each job (line 1),
the algorithm first checks if device k is used by the current job (line 2). If it is,
the procedure keeps the device in the powered up state. If the device is not used
by the current job, there is a possibility that it can be shut down. The procedure
then identifies the power state the device can be switched to. The identifica-
tion of the correct power state is illustrated in lines 3–9. If the time difference
between the start of the next job that uses k and the current scheduling in-
stant is greater than the breakeven time corresponding to device state ds and
also greater than twice the transition time to power state ds, then the variable
state is set to ds. In line 10, the state of the device is recorded and in line 11, a
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Fig. 9. Procedure to extract a device schedule from a given task schedule.

timer is set to wake k up just in time for job jl to begin execution. Lines 13–22
correspond to the device state identification at the completion of job ji. Note
that here, no check is performed to see if k is in the current job’s device-usage
list.

Intuitively, MDO attempts to keep a device in a given state (sleep or powered-
up) for as long as possible before switching it to a different state. This algorithm
is similar to the one presented in Lu et al. [2000], where device requests are
grouped together to keep devices powered-down for extended periods of time in
order to reduce energy consumption. However, owing to real-time constraints,
there is much less flexibility here than in Lu et al. [2000]. The authors of Lu
et al. [2000] focus on device scheduling for interactive systems with no hard
timing constraints. Their method, like MDO, attempts to schedule, at every
scheduling instant, a task with the maximum device-usage overlap with the
current task. However, since they do not consider a real-time task model with
periodic arrivals and deadlines, their approach is less constrained than the
MDO heuristic. Furthermore, in a hard real-time system, it is generally not
advisable to power down devices when tasks that use them are being executed.
Thus, MDO and EDS perform intertask device scheduling rather than intra-
task voltage scheduling, as is done in Lu et al. [2000].
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Table III. Experimental Task Set T 1

Execution Period
Task Time (Deadline) Device List
τ1 1 4 k1, k3
τ2 3 5 k2, k3

While performing preemptive scheduling with I/O resources, task blocking
becomes an important issue. Blocking refers to the phenomenon where a task
that is executing a critical section of code gets preempted while holding I/O
resources that are required by the preempting task. This can potentially result
in missed deadlines. Several algorithms have been proposed that address the
issue of blocking under fixed-priority and dynamic-priority scheduling policies
[Baker 1991; Sha et al. 1990]. For example, the stack resource policy (SRP), de-
scribed in Baker [1991], requires a preempting task to request all the resources
it requires for execution prior to preemption. Preemption is not allowed if the
required resources are unavailable. In our MDO algorithm, we do not explic-
itly address the issue of blocking—we generate a device schedule for a given
task schedule and assume that the allocation of resources and the prevention of
blocking is performed by an underlying algorithm such as SRP. However, MDO
ensures that the start of a job is not delayed by devices that are powereddown
and therefore unavailable. In other words, MDO ensures that all devices re-
quired by a job are powered-up and ready before the job begins execution, and
an underlying blocking-prevention algorithm ensures that deadlock situations
do not arise. Such a blocking test can be easily integrated into MDO and can be
performed prior to swapping job slices. In the next section, we present experi-
mental results for EDS and MDO.

7. EXPERIMENTAL RESULTS

We evaluated EDS and MDO for several periodic task sets with varying hyper-
periods and number of jobs. We compare the memory requirement of the tree
with the pruning algorithm to the memory requirement of the tree without
pruning. Memory requirement is measured in terms of the number of nodes at
every level of the schedule tree.

The first experimental task set, shown in Table III, consists of two tasks
with a hyperperiod of 20. The device-usage lists for tasks were randomly gener-
ated. The device parameters were chosen from real devices that are currently
deployed in the field. The devices and their parameters are listed in Table IV.
These I/O devices are a representative set of devices commonly used in embed-
ded applications. These I/O devices can be classified into two categories (see
Figure 10)1. Type I devices are devices that stay in a given state until an ex-
plicit power management command is issued. Type II devices are devices that
stay in the powered-up state only while processing requests, and then automat-
ically transition to a lower-powered idle state when not in use (note, however,
that this idle state is different from a fully powered-down sleep state). The DSP
is a device that can be powered-down to a fully low-powered sleep state in a

1Figure 10 was provided by Reviewer 3.
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Table IV. Device Parameters Used in Evaluating EDS and MDO

Device ki Device Type Pw,i (W) Psd ,i = Pwu,i = P0,i (W) t0,i (s) Ps,i (W)
k1 HDD1 2.3 1.5 0.02 1.0
k2 NIC2 0.3 0.2 0.5 0.1
k3 DSP3 0.63 0.4 0.5 0.25

1After Fujitsu MHL2300AT Hard Disk Drive Product Manual.
2After AMD Am79C874 NetPHY-1LP Low Power 10/100 Tx/Rx Ethernet Transceiver Technical Data sheet.
3After TMS320C6411 Power Consumption Summary.

Fig. 10. An illustration of power models for I/O devices (courtesy Reviewer 3).

small amount of time and is a good example of a type I device. On the other
hand, the disk drive (HDD) has three power states—an active state in which
the disk reads and writes data, an intermediate-powered idle state where the
spindle and disk platters are still spinning without read/write activity, and a
low-power standby state where the spindle is stopped. This is an example of a
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Table V. Job Set Corresponding to Experimental Task Set T 1

j1 j2 j3 j4 j5 j6 j7 j8 j9
ai 0 0 4 5 8 10 12 15 16
ci 1 3 1 3 1 3 1 3 1
di 4 5 8 10 12 15 16 20 20

type II device, where “implicit” power management by the device switches it to
an intermediate state that is different from a fully low-powered sleep state. For
the disk drive, the power consumed in transitioning from standby to idle/active
is 4.5 W and the transition time is typically around 5 s, resulting in a breakeven
time of approximately 18 s. This interval of inactivity is rarely seen at run-time,
and the disk drive stays in the idle state for the entire hyperperiod. Therefore,
we assume here that the sleep power Ps is the power consumed when the de-
vice is in the idle state (spindle is spinning with no read/write activity). The
active power Pw corresponds to the power consumed during actual reading and
writing of data, and the transition power P0 represents the power consumption
during a transition from the sleep state (idle) to the active state (read/write)
(the transition time between these states is 22 ms [Fujitsu MHL2300AT]).

Although the transitions from the active to idle states are performed “im-
plicitly” (i.e., by the hard disk, without an explicit power-down command), we
use this device model since it provides a more accurate picture of energy con-
sumption. During execution of a task, we assume that the disk drive consumes
2.3 W of power to read and write data, and during idle periods, the disk-drive
transitions to the intermediate idle state where the platters are still spun-up,
but without any read/write activity.

It is also important to note that any explicit device scheduling algorithm
operates atop the implicit power management performed by the device itself.
However, explicit power management yields greater energy savings than im-
plicit power management because devices can be switched to lower-powered
states earlier, thereby enabling them to save greater amounts of energy than
implicit power management.

Expansion of the task set in Table III results in the job set shown in Table V.
Figures 11(a) and 11(b) show the task and device schedules generated for the
task set in Table III using the fixed-priority rate-monotonic scheduling algo-
rithm Liu and Layland [1973]. Since device k3 is used by both tasks, it stays
powered up throughout the hyperperiod. The device schedule for k3 is therefore
not shown in Figure 11.

If all devices are powered up throughout the hyperperiod, the energy con-
sumed by the I/O devices for any task schedule is 66 J. Figure 12 shows an
optimal task schedule generated using EDS. The energy consumption of the
optimal task (device) schedule is 44 J, resulting in a 33% reduction in energy
consumption.

From Figure 11(b), we see that device k2 stays powered-up for almost the
entire hyperperiod and device k1 performs 10 transitions over the hyperperiod.
Moreover, device k2 stays powered up even when it is not in use due to the fact
that there is insufficient time for shutting down and powering the device back
up. By examining Figures 12(a) and 12(b), we deduce that minimum energy will
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Fig. 11. Task schedule for task set in Table III using RMA.

be consumed if (i) the time for which the devices are powered up is minimized,
(ii) the time for which the devices are shutdown is maximized, and (iii) the
number of device transitions is minimized (however, if the transition power of
a device ki is less than its active (operating) power, then energy is minimized
by forcing any idle interval for the device to be at least 2t0,i). In Figure 12(b), no
device is powered up when it is not in use. Furthermore, by scheduling jobs of
the same task one after the other, the number of device transitions is minimized,
resulting in the maximization of device sleep time. Our approach to reducing
energy consumption is to find jobs with the maximum device-usage overlap and
schedule them one after the other. Indeed, two jobs will have maximum overlap
with each other if they are instances of the same task. This is the approach that
EDS follows. An alternative approach that MDO takes is to use a precomputed
job schedule and swap job slices in an intelligent manner in order to keep
devices in a given state for as long a time as possible. It is for this reason that
the MDO algorithm generates solutions that are close to optimal, within 4% of
the optimal value in all of our experiments.

A side-effect of scheduling jobs of the same task one after the other is the
maximization of task activation jitter (see Figure 12). In some real-time con-
trol systems, this is an undesirable feature, which reduces the applicability of
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Fig. 12. Optimal task schedule for Table III.

EDS in such systems. However, it is clear that jobs of the same task must be
scheduled one after the other in order to minimize device energy. It therefore ap-
pears that scheduling devices for minimum energy and minimizing activation
jitter are not always compatible goals.

In order to illustrate the effectiveness of the pruning technique, we compare
EDS with an exhaustive enumeration method (EE) which generates all possible
schedules for a given job set. The rapid growth in the state space with EE is
evident from Table VI. We see that the number of vertices generated by EE is
enormous, even for a relatively small task set as in Table III. In contrast, EDS
requires far less memory. The total number of vertices for EDS is 87% less than
that of EE.

By changing the periods of the tasks in Table III, we generated several job
sets whose hyperperiods ranged from H = 20 to H = 40 with the number
of jobs J ranging from 9 to 13. For job sets larger than this, EE failed due
to lack of computer memory. EE also took prohibitively large amounts of time
to run to completion. These experiments were performed on a 500 MHz Sun
workstation with 512 MB of RAM and 2 GB of swap space. The results are
shown in Table VII.

ACM Transactions on Embeded Computing Systems, Vol. 4, No. 1, February 2005.



162 • V. Swaminathan and K. Chakrabarty

Table VI. Percentage Memory Savings

Tree No. of Vertices at Depth i Memory
Depth i EE EDS Savings (%)
1 7 7 0
2 4 4 0
3 20 14 30
4 18 12 61
5 76 24 68
6 156 26 83
7 270 18 93
8 648 24 96
9 312 8 97

Total 1512 158 90

Table VII. Comparison of Memory Consumption and Execution Time for EE and EDS

No. of Vertices Execution Time
Job Set EE EDS EE EDS
H = 20, J = 9 1,512 158 <1 s <1 s
H = 30, J = 11 252,931 1,913 2.3 s <1 s
H = 35, J = 12 2,964,093 2,297 28.2 s 4.6 s
H = 40, J = 13 23,033,089 4,759 7 m 15 s 35.2 s
H = 45, J = 14 – 7,815 – 2 m 29.5 s
H = 55, J = 16 – 18,945 – 2 h 24 m 15 s
H = 60, J = 17 – 30,191 – 5 h 10 m 23.2 s

– Failed due to insufficient memory.

For job sets with the number of jobs being greater than 17 jobs, the EDS
algorithm failed due to insufficient memory. We circumvent this problem by
breaking up the vertices generated at level 1 into several separate subproblems.
Energy pruning is then performed within and across each subproblem. This is
explained in greater detail in the next paragraph.

Let us consider our running example for pruning. Figure 3 illustrates the
partial schedule tree after one job has been scheduled. The original EDS algo-
rithm expands each of these nodes in a breadth-first fashion and then performs
energy-based pruning across all nodes at the second level, as shown in Figure 4.
At deeper levels, the number of nodes increases tremendously, thereby making
excessive demands on memory. An enhancement to EDS that addresses the
memory consumption issue is to expand only a single level-1 vertex at a time
and perform temporal and energy pruning within this single subproblem. The
memory requirement is therefore reduced significantly. The minimum-energy
schedule derived from solving this single subproblem is then recorded. When
the next subproblem is solved, energy pruning is performed both within the cur-
rent subproblem and across all previously solved subproblems. The solution of
a single subproblem results in a minimum-energy schedule with a given level-1
job. This energy value is used as an additional bound that is used for further
pruning, even at intermediate depths, in succeeding subproblems. With this en-
hancement, we were able to solve job sets of up to 26 jobs. Even larger problem
instances can be solved by breaking the vertices at lower levels into independent
subproblems. Here, however, we restrict ourselves only to level-1 subproblems.
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Table VIII. Comparison of EDS with MDO

Energy Consumption (J) Execution Time
Enhanced All %�E1 = %�E1 = Enhanced

Job Set EDS MDO Powered Up Eeds−Eapu
Eapu

Emdo−Eeds
Eeds

EDS MDO

H = 20, J = 9 44.12 45.25 66.60 −33.7% 2.5% <1 s <1 s
H = 30, J = 11 60.92 62.72 96.9 −37.1% 2.9% <1 s <1 s
H = 35, J = 12 69.85 72.42 113.05 −38.2% 3.6% <1 s <1 s
H = 40, J = 13 78.17 80.68 129.20 −39.4% 3.2% <1 s <1 s
H = 45, J = 14 87.13 90.38 145.35 −40.0% 3.7% <1 s <1 s
H = 55, J = 16 104.33 106.88 177.65 −41.2% 2.4% <1 s <1 s
H = 60, J = 17 112.73 115.13 193.80 −41.8% 2.1% 3.98 s <1 s
H = 65, J = 18 121.53 123.38 203.95 −40.4% 1.5% 19.15 s <1 s
H = 70, J = 19 129.93 131.6 226.1 −42.5% 1.2% 58.8 s <1 s
H = 80, J = 21 147.13 148.12 258.4 −43.0% 0.6% 7 m 31 s <1 s
H = 85, J = 22 156.0 156.37 274.0 −43.0% 0.2% 30 m 45 s <1 s
H = 90, J = 23 164.33 164.62 290.7 −43.4% 0.1% 2 h 39 m 35 s <1 s
H = 95, J = 24 170.45 172.87 306.85 −44.5% 1.4% 8 h 9 m 17.3 s <1 s
H = 105, J = 26 186.23 189.37 339.15 −45.0% 1.6% 50 h 0 m 26.6 s <1 s

Eeds: Energy consumption using EDS.
Eapu: Energy consumption with devices all powered up.
Emdo: Energy consumption using MDO.

The results for the enhanced EDS algorithm, including a comparison to the
MDO heuristic, are shown in Table VIII. For this set of experiments, we used a
PC running at 1.4 GHz with 512 MB of RAM.

The MDO algorithm took under 1 s to run for each of the job sets. Further-
more, it results in solutions that differ from the optimal by less than 4%. The
energy consumptions of EDS and MDO are also compared to the case where
all devices are powered up. The minimum-energy schedules generated by EDS
result in energy savings of up to 45% for the larger job sets listed in the table.
The growth of the search space (and corresponding increase in execution time)
is also evident from the table. An important point to note here is that the use
of the energy value of a complete schedule obtained from solving a single sub-
problem as a bound results in significant pruning at lower levels in the tree.
Therefore, the time taken to search the final set of complete schedules for a min-
imum energy schedule is significantly reduced. This results in faster execution
times for the enhanced EDS algorithm.

Finally, we compare EDS with an online device scheduling algorithm for
hard real-time systems called LEDES [Swaminathan and Chakrabarty 2003]
and a simple timeout-based scheme. In the timeout-based scheme, a device is
powered-down if it has not been used for a prespecified interval of time (here, we
assume that the timeout interval is 1 unit). However, a timeout-based scheme
cannot be used in hard real-time systems since it cannot guarantee that jobs
complete execution before their deadlines. Nevertheless, we compare our al-
gorithms with the timeout method to highlight the effectiveness of our algo-
rithms. These results are presented in Table IX. EDS performs better than
LEDES and timeout method for all experimental task sets. Moreover, the time-
out method resulted in an average of 6.8 missed job deadlines over all our job
sets.
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Table IX. Comparison of EDS and LEDES [Swaminathan and Chakrabarty 2003]

Energy Consumption (J) �E3 =
Job Set EDS LEDES Timeout Eeds−Eledes

Eledes
(%)

H = 20, J = 9 44.12 59.69 60.21 −26.0
H = 30, J = 11 60.92 75.29 85.23 −19.0
H = 35, J = 12 69.85 88.4 100.87 −20.0
H = 40, J = 13 78.17 102.65 108.76 −23.8
H = 45, J = 14 87.13 116.9 130.43 −25.4
H = 55, J = 16 104.33 145.4 155.5 −28.2
H = 60, J = 17 112.73 159.65 170.43 −29.3
H = 65, J = 18 121.53 173.9 192.76 −30.1
H = 70, J = 19 129.93 188.15 216.8 −30.9
H = 80, J = 21 147.13 216.65 240.98 −31.9
H = 85, J = 22 156.0 230.9 252.43 −32.4
H = 90, J = 23 164.33 245.15 270.32 −33.0
H = 95, J = 24 170.45 259.4 282.53 −34.3
H = 105, J = 26 186.23 287.9 315.76 −35.4

Eeds: Energy consumption using EDS.
Eledes: Energy consumption using LEDES.

Finally, we discuss the impact of the assumption that Psd,i = Pwu,i and tsd,i =
twu,i on energy consumption. If the shutdown power Psd,i is not equal to the
wakeup power Pwu,i, and tsd,i is not equal to twu,i, the methods and analyses
presented here can still be validated by setting P0,i = max{Psd,i, Pwu,i} and
t0,i = max{tsd,i, twu,i}. For the case where Psd,i < Pwu,i and tsd,i < twu,i, we can
expect to save more energy. If Psd < Pwu, devices will not consume as much
energy in transitioning between power states, and if tsd < twu, devices can
be powered-down sooner and can stay in the low-power sleep state for longer
periods of time. Hence, without the assumption that Psd,i = Pwu,i and tsd,i = twu,i,
we can obtain greater savings in energy.

8. CONCLUSIONS

Energy consumption is an important design parameter for embedded comput-
ing systems that operate under stringent battery lifetime constraints. In many
embedded systems, the I/O subsystem is a viable candidate to target for energy
reduction. In this paper, we have described an offline low-energy I/O device
scheduling algorithm called EDS for hard real-time systems. Our experimental
results show that energy savings of over 40% can be obtained using EDS. We
have shown that the I/O device scheduling problem is NP-complete and that
EDS can optimally solve small to moderate-sized problem instances. To solve
larger problem instances, we have presented the MDO heuristic that reorders
task execution such that devices stay powered down for long periods of time. In
all of our experiments, solutions generated by the MDO heuristic consume at
most 4% more energy than the energy-optimal EDS solutions.

We next list a few possible extensions to the device scheduling problem and
EDS.

� Joint CPU/IO-Device Optimization. Dynamic voltage scaling (DVS) algo-
rithms are currently used for energy minimization in many embedded
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systems. Therefore, the effect of task scheduling for minimum device en-
ergy on DVS algorithms must be studied in greater detail. An extension to
combine I/O-based DPM with DVS appears to be straightforward. The slack
that is present in task schedules that are generated using EDS can be uti-
lized with existing DVS algorithms to further reduce energy consumption.
However, using DVS for power reduction results in longer execution times
for application tasks which, in turn, causes devices to stay powered-up for
longer periods of time. Therefore, care must be taken to ensure that the in-
creased energy consumption of I/O devices does not nullify the energy savings
using DVS. In this way, two of the major consumers of energy in embedded
systems—the CPU and I/O subsystem—can be efficiently targeted for energy
reduction.

� Inclusion of Precedence Constraints. In this paper, we have assumed an inde-
pendent task model. However, application tasks often have precedence con-
straints between them, that is, some tasks (jobs) cannot begin before the
completion of other tasks (jobs). Our algorithms can be extended to handle
task sets with precedence constraints. With precedence constraints, temporal
pruning in the EDS algorithm plays a more significant role in the elimination
of redundant schedules since many jobs cannot be scheduled at time-points
earlier than the completion of their predecessor jobs. Since the earliest start
times and latest finish times of precedence-constrained jobs are restricted
to fewer values than with independent jobs, a fewer number of vertices are
generated at each level in the schedule tree. Hence EDS is more effective for
precedence-constrained tasks. The MDO algorithm can also be extended to
address jobs with precedence relations. MDO uses a real-time task schedul-
ing strategy to generate a task schedule and then reorders task slices for
reduced energy consumption. It is straightforward to incorporate an addi-
tional check within the MDO algorithm to ensure that swapping job slices
does not violate precedence constraints between the slices.
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